NOTE 259: pyrap binding to casacore

Ger van Diepen, ASTRON Dwingeloo

November 10, 2006

Abstract

pyrap is a Python binding to casacore classes using Boost.Python.
It consists of a set of standard converters and bindings to the classes.
As much as possible the bindings are the same as in glish.

Contents



1 Introduction

Since long glish bindings to the casacore system have been in place. Quite
recently Python bindings have been created in the general casapy framework
using tools like CCMTools, Xerces, Xalan, and IDL. Albeit very flexible, it
is quite complicated and it is not straightforward to build on other systems
than RedHat and OS-X.

Therefore an attempt has been made to make a simpler Python binding
using Boost.Python. This proved to be very easy and succesful. The binding
consists of two parts:

e Converters to translate objects between Python and C++.
e (Class wrappers to map a C++ class and its functions to Python.

The Python numarray and numpy (version 1.0 or higher) packages are sup-
ported. At build time one can choose which ones should be used.

2 Converters

Boost.Python offers a nice way to convert objects to and from Python.
Ralf W. Grosse-Kunstleve <rwgk@yahoo.com> of Lawrence Berkeley Na-
tional Laboratory has built converters for standard STL containers. This
has been extended to convert to/from other objects.
The following C++ objects are currently supported:

e scalars (bool, integer, real, complex)
e std::string

e casa::String

e std::vector<T>

e casa::Vector<T>

e casa::IPosition

e casa::Record

e casa::ValueHolder

e exceptions (casa::IterError and std::exception)


http://casacore.googlecode.com
http://www.boost.org/libs/python/doc
http://www.lbl.gov
http://www.lbl.gov

These C++ objects can usually be created from several types of Python
objects and are converted to a specific Python object.

e A vector or IPosition object is converted to a Python list.
It can be constructed from the following Python objects:

— scalar
— list or tuple
— numarray scalar or 1-dim array

— numpy scalar or 1-dim array

Note that a list or tuple of arbitrary objects can be given. For example,
it is possible to get a Vector<TableProxy> from Python.

e A casa::Record is mapped to a Python dict.

e Every C++ exception is mapped to a Python RunTimeError excep-
tion. However, casa: :IterError is special and is mapped to an end-
of-iteration exception (StopIteration) in Python.

e A casa::ValueHolder is a special casacore object that can hold a record
or a scalar value or n-dim array of many types (bool, numeric, string).
It is meant to conceal the actual type which is useful in functions that
can accept a variety of types (like getcell in the table binding).
Converting a ValueHolder to Python creates the appropriate Python
scalar, array, or dict object. When converting from Python to Value-
Holder, the appropriate internal ValueHolder value is constructed; a
list, tuple, and array object are converted to an |casacore array in the
ValueHolder.

It means there is no direct Array conversion to/from Python. A ValueHolder
object is always needed to do the conversion. Note that this is a cheap
operation, as it uses Array reference semantics. ValueHolder has functions
to convert between types, so one can get out an Array with the required

type.

2.1 Array conversion to/from numpy and numarray

casacore| arrays are kept in Fortran-order, while Python arrays are kept in
C-order. It was felt that the Python interface should be as pythonic as
possible. Therefore it was decided that the array axes are reversed when
converting to/from Python. The values in an IPosition object (describing


http://casacore.googlecode.com
http://casacore.googlecode.com
http://casacore.googlecode.com

shape or position) are also reversed when converting to/from Python.
Note that although numarray and numpy have Fortran-array provisions by
setting the appropriate internal strides, they do not really support them.
When adding, for instance, the scalar value 0 to a Fortran-array, the re-
sult is a transposed version of the original (which can be a quite expensive
operation).

A function binding could be such that shape information is passed via,
say, a Record and not via an IPosition object. In that case its values are
not reversed automatically, so the programmer is responsible for doing it.

An |casacore array is returned to Python as an array object containing
a copy of the casacore| array data. If pyrap has been built with support for
only one Python array package (numpy or numarray), it is clear which array
type is returned. If support for both packages has been built in, by default
an array of the imported package is returned. If both or no array packages
have been imported, a numpy array is returned.

Note that there is no support for the old Numeric package.

An |casacore array constructed from a Python array is regarded as a
temporary object. So if possible, the casacore array refers to the Python
array data to avoid a needless copy. This is not possible if the element size
in Python differs from casacore. It is also not possible if the Python array
is not contiguous (or not aligned or byte swapped). In those cases a copy is
made.

A few more numarray/numpy specific issues are dealt with:

e An empty N-dim casacore array (i.e. an array containing no elements)
is returned as an empty N-dim Python array. If the dimensionality
is zero, it is returned as an empty 1-dim array, to prevent numar-
ray/numpy from treating it as a scalar value.

e In numarray array() results in Py _None. This is accepted by the
converters as an empty 1-dim array.

e Empty arrays can be constructed in Python using empty lists. For ex-
ample, array([[]1]) results in an empty 2-dim array. The converters
accept such empty N-dim Python arrays. The type of an empty array
is set to Int by numarray and to Double by numpy.

e Because the type of an empty Python array cannot easily be set, the
converters can convert an empty integer or real array to any type.

e The converters accept a numpy string array. However, it is returned
to Python as the special dict object described above.


http://casacore.googlecode.com
http://casacore.googlecode.com
http://casacore.googlecode.com
http://casacore.googlecode.com
http://casacore.googlecode.com
http://casacore.googlecode.com

3 Class wrappers

Usually a binding to an existing Proxy class is made, for example TableProxy,
which should be the same class used in the glish-binding. For a simple bind-
ing, only some simple C++ code has to be written in pyrap_xx/src/pyxx.cc,
where XX is the name of the package/class.

// Include files for converters being used.
#include <pyrap/Converters/PycExcp.h>
#include <pyrap/Converters/PycBasicData.h>
#include <pyrap/Converters/PycRecord.h>

// Include file for boost python.

#include <boost/python.hpp>

using namespace boost::python;

namespace casa { namespace pyrap {
void wrap_xx()
{
// Define the class; "xx" is the class name in Python.
class_<XX> ("xx")
// Define the constructor.
// Multiple constructors can be defined.
// They have to have different number of arguments.
.def (init<>())
// Add a .def line for each function to be wrapped.
// An arg line should be added for each argument giving
// its name and possibly default value.
.def ("funcil", &XX::funcl,
(boost: :python: :arg("argl"),
boost: :python: :arg("arg2")=0))

}
1}

BOOST_PYTHON_MODULE (_xx)

{
// Register the conversion functions.
casa: :pyrap: :register_convert_excp();
casa: :pyrap: :register_convert_basicdata();



casa::pyrap: :register_convert_casa_record();
// Initialize the wrapping.
casa: :pyrap: :wrap_xx() ;

3

Python requires for each package a file __init__.py, so such an empty file
should be created as well.

3.1 More complicated wrappers

Sometimes a C++ function cannot be wrapped directly, because the argu-
ment order needs to be changed or because some extra Python checks are
necessary. In such a case the class needs to be implemented in Python itself.
The C++ wrapped class name needs to get a different name, usually by
preceeding it with an underscore like:

class_<XX> ("_xx")

The Python class should be derived from it and implement the constructor
by calling the constructor of _xx.

class xx(_xx):
def __init__(self):
_XX.__init__(self)

Now xx inherits all functions from _xx. The required function can be written
in Python like

def funcl (self, argl, arg2):
return self._funcl (arg2, argl);

Note that in the wrapper the function name also needs to be preceeded by
an underscore to make it different.

3.2 Combining multiple classes

Sometimes one wants to combine multiple classes in a package. A example
is package pyrap_tables which contains the classes table, tablecolumn,
tablerow, tableiter, and tableindex. One is referred to the code of this
package to see how to do it.



4 Python specifics

Besides an array being in C-order, there are a few more Python specific
issues.

e Indexing starts at 0 (vs. 1 in glish).

e The end value in a range like [10:20] is exclusive (vs. inclusive in
glish). Furthermore Python supports a step and reversed ranges.

e Where useful, the function __str__ should be added giving the name
of the object. This function is used when printing an object.

e Where useful, the functions __len__, __setitem__(index, value), and
__getitem__(index) should be added to make it possible that a user in-
dexes an object directly like tabcol[i] or tabcol [start:stop:step].

e When these functions are added, Python supports iteration in an
object. Explicit iteration can also be done by adding the functions
__iter__and next. At the end next should raise the Python StopIteration
exception (or throw casa::IterError when implemented in C++) to
stop the iteration.



	Introduction
	Converters
	Array conversion to/from numpy and numarray

	Class wrappers

